If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-14y-40=0
a = 1; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·1·(-40)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{89}}{2*1}=\frac{14-2\sqrt{89}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{89}}{2*1}=\frac{14+2\sqrt{89}}{2} $
| -7v^2-9=0 | | n–12=3n | | 44-7x=x^2-4x+4 | | 90=5(2x+4 | | 80*0.3+x*0.7=100 | | s/3-10=-8 | | w/5-58=66 | | 5(x-13)=50 | | 54=-8+x/2 | | 1/2c+3=1 | | n-15= 8n | | 5x(x)=6 | | 3x^2-22x=11x-72 | | 1.5x-x=30000 | | -7x^2-6=-11x | | 90=c/9+86 | | 22=4r–14 | | -3/4w=9 | | 71+v=107 | | 40=4x/5 | | -4b+4=-4(b-1) | | 4(x-2)-5=6(3+x)+7 | | 3x-5(x-3)=-6 | | 890=16t^2 | | 4(x-2)-5=6(3=x)=7 | | –2(x–5)=6(2–0.5x) | | 2(5x-10)=1250 | | 3(4)x-4=2(4) | | 7(2x-9)=-49 | | -6d+3=-3(2d-1) | | –36=6a | | 14x-56=34-x |